Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3158, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605006

RESUMO

Tropical forests cover large areas of equatorial Africa and play a substantial role in the global carbon cycle. However, there has been a lack of biometric measurements to understand the forests' gross and net primary productivity (GPP, NPP) and their allocation. Here we present a detailed field assessment of the carbon budget of multiple forest sites in Africa, by monitoring 14 one-hectare plots along an aridity gradient in Ghana, West Africa. When compared with an equivalent aridity gradient in Amazonia, the studied West African forests generally had higher productivity and lower carbon use efficiency (CUE). The West African aridity gradient consistently shows the highest NPP, CUE, GPP, and autotrophic respiration at a medium-aridity site, Bobiri. Notably, NPP and GPP of the site are the highest yet reported anywhere for intact forests. Widely used data products substantially underestimate productivity when compared to biometric measurements in Amazonia and Africa. Our analysis suggests that the high productivity of the African forests is linked to their large GPP allocation to canopy and semi-deciduous characteristics.


Assuntos
Florestas , Árvores , Ciclo do Carbono , Gana , Carbono , Ecossistema , Clima Tropical
2.
Sci Total Environ ; 895: 165071, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356767

RESUMO

Global climate change is expected to further intensify the global water cycle, leading to more rapid evaporation and more intense precipitation. At the same time, the growth and expansion of natural vegetation caused by climate change and human activities create potential conflicts between ecosystems and humans over available water resources. Clarifying how terrestrial ecosystem evapotranspiration responds to global precipitation and vegetation facilitates a better understanding of and prediction for the responses of global ecosystem energy, water, and carbon budgets under climate change. Relying on the spatial and temporal distribution of evapotranspiration, precipitation, and solar-induced chlorophyll fluorescence (SIF) from remote sensing platforms, we decouple the interaction mechanism of evapotranspiration, precipitation, and vegetation in linear and nonlinear scenarios using correlation and partial correlation analysis, multiple linear regression analysis, and binning. Major conclusions are as follows: (1) As a natural catalyst of the global water cycle, vegetation plays a crucial role in regulating the relationship between climate change and the water­carbon-energy cycle. (2) Vegetation, a key parameter affecting the water cycle, participates in the entire water cycle process. (3) The increase in vegetation productivity and photosynthesis plays a dominant role in promoting evapotranspiration in vegetated areas, while the increase in precipitation dominates the promotion of evapotranspiration in non-vegetated areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...